NFATc3 regulates BK channel function in murine urinary bladder smooth muscle.
نویسندگان
چکیده
The nuclear factor of activated T-cells (NFAT) is a Ca(2+)-dependent transcription factor that has been reported to regulate the expression of smooth muscle contractile proteins and ion channels. Here we report that large conductance Ca(2+)-sensitive potassium (BK) channels and voltage-gated K(+) (K(V)) channels may be regulatory targets of NFATc3 in urinary bladder smooth muscle (UBSM). UBSM myocytes from NFATc3-null mice displayed a reduction in iberiotoxin (IBTX)-sensitive BK currents, a decrease in mRNA for the pore-forming alpha-subunit of the BK channel, and a reduction in BK channel density compared with myocytes from wild-type mice. Tetraethylammonium chloride-sensitive K(V) currents were elevated in UBSM myocytes from NFATc3-null mice, as was mRNA for the Shab family member K(V)2.1. Despite K(V) current upregulation, bladder strips from NFATc3-null mice displayed an elevated contractile response to electrical field stimulation relative to strips from wild-type mice, but this difference was abrogated in the presence of the BK channel blocker IBTX. These results support a role for the transcription factor NFATc3 in regulating UBSM contractility, primarily through an NFATc3-dependent increase in BK channel activity.
منابع مشابه
Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel.
BK large conductance voltage- and calcium-activated potassium channels respond to elevations in intracellular calcium and membrane potential depolarization, braking excitability of smooth muscle. BK channels are thought to have a particularly prominent role in urinary bladder smooth muscle function and therefore are candidate targets for overactive bladder therapy. To address the role of the BK...
متن کاملCentral role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 307: R571– R584, 2014. First published July 2, 2014; doi:10.1152/ajpregu.00142.2014.—The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the uri...
متن کاملRe: Central Role of the BK Channel in Urinary Bladder Smooth Muscle Physiology and Pathophysiology.
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in U...
متن کاملNS19504: A Novel BK Channel Activator with Relaxing Effect on Bladder Smooth Muscle Spontaneous Phasic Contractions s
Large-conductance Ca-activated K channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader–based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]...
متن کاملNS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions.
Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008